3.527 \(\int \frac{x^2 \sqrt{d+e x}}{a+b x+c x^2} \, dx\)

Optimal. Leaf size=316 \[ \frac{\sqrt{2} \left (-\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{c^{5/2} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\sqrt{2} \left (\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{c^{5/2} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{2 b \sqrt{d+e x}}{c^2}+\frac{2 (d+e x)^{3/2}}{3 c e} \]

[Out]

(-2*b*Sqrt[d + e*x])/c^2 + (2*(d + e*x)^(3/2))/(3*c*e) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*
d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 -
 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e + (b^2*c*d -
 2*a*c^2*d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + S
qrt[b^2 - 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

________________________________________________________________________________________

Rubi [A]  time = 3.15817, antiderivative size = 316, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {897, 1287, 1166, 208} \[ \frac{\sqrt{2} \left (-\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{c^{5/2} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\sqrt{2} \left (\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{c^{5/2} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{2 b \sqrt{d+e x}}{c^2}+\frac{2 (d+e x)^{3/2}}{3 c e} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[d + e*x])/(a + b*x + c*x^2),x]

[Out]

(-2*b*Sqrt[d + e*x])/c^2 + (2*(d + e*x)^(3/2))/(3*c*e) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*
d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 -
 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e + (b^2*c*d -
 2*a*c^2*d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + S
qrt[b^2 - 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 897

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + (g*x^q)/e)^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - ((2*c*d - b*e)*x^q)/e^2 + (c*x^(2*q))/e^2)^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1287

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[((f*x)^m*(d + e*x^2)^q)/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{d+e x}}{a+b x+c x^2} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{x^2 \left (-\frac{d}{e}+\frac{x^2}{e}\right )^2}{\frac{c d^2-b d e+a e^2}{e^2}-\frac{(2 c d-b e) x^2}{e^2}+\frac{c x^4}{e^2}} \, dx,x,\sqrt{d+e x}\right )}{e}\\ &=\frac{2 \operatorname{Subst}\left (\int \left (-\frac{b e}{c^2}+\frac{x^2}{c}+\frac{b \left (c d^2-b d e+a e^2\right )-\left (b c d-b^2 e+a c e\right ) x^2}{c^2 e \left (\frac{c d^2-b d e+a e^2}{e^2}-\frac{(2 c d-b e) x^2}{e^2}+\frac{c x^4}{e^2}\right )}\right ) \, dx,x,\sqrt{d+e x}\right )}{e}\\ &=-\frac{2 b \sqrt{d+e x}}{c^2}+\frac{2 (d+e x)^{3/2}}{3 c e}+\frac{2 \operatorname{Subst}\left (\int \frac{b \left (c d^2-b d e+a e^2\right )+\left (-b c d+b^2 e-a c e\right ) x^2}{\frac{c d^2-b d e+a e^2}{e^2}-\frac{(2 c d-b e) x^2}{e^2}+\frac{c x^4}{e^2}} \, dx,x,\sqrt{d+e x}\right )}{c^2 e^2}\\ &=-\frac{2 b \sqrt{d+e x}}{c^2}+\frac{2 (d+e x)^{3/2}}{3 c e}-\frac{\left (b c d-b^2 e+a c e-\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{\sqrt{b^2-4 a c}}{2 e}-\frac{2 c d-b e}{2 e^2}+\frac{c x^2}{e^2}} \, dx,x,\sqrt{d+e x}\right )}{c^2 e^2}-\frac{\left (b c d-b^2 e+a c e+\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b^2-4 a c}}{2 e}-\frac{2 c d-b e}{2 e^2}+\frac{c x^2}{e^2}} \, dx,x,\sqrt{d+e x}\right )}{c^2 e^2}\\ &=-\frac{2 b \sqrt{d+e x}}{c^2}+\frac{2 (d+e x)^{3/2}}{3 c e}+\frac{\sqrt{2} \left (b c d-b^2 e+a c e-\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}+\frac{\sqrt{2} \left (b c d-b^2 e+a c e+\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\\ \end{align*}

Mathematica [A]  time = 0.467621, size = 375, normalized size = 1.19 \[ \frac{\sqrt{2} \left (-b^2 \left (e \sqrt{b^2-4 a c}+c d\right )+b c \left (d \sqrt{b^2-4 a c}-3 a e\right )+a c \left (e \sqrt{b^2-4 a c}+2 c d\right )+b^3 e\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{c^{5/2} \sqrt{b^2-4 a c} \sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}-\frac{\sqrt{2} \left (b^2 \left (e \sqrt{b^2-4 a c}-c d\right )-b c \left (d \sqrt{b^2-4 a c}+3 a e\right )+a c \left (2 c d-e \sqrt{b^2-4 a c}\right )+b^3 e\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{c^{5/2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{2 \sqrt{d+e x} (c (d+e x)-3 b e)}{3 c^2 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[d + e*x])/(a + b*x + c*x^2),x]

[Out]

(2*Sqrt[d + e*x]*(-3*b*e + c*(d + e*x)))/(3*c^2*e) + (Sqrt[2]*(b^3*e + b*c*(Sqrt[b^2 - 4*a*c]*d - 3*a*e) - b^2
*(c*d + Sqrt[b^2 - 4*a*c]*e) + a*c*(2*c*d + Sqrt[b^2 - 4*a*c]*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt
[2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e]])/(c^(5/2)*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) - (
Sqrt[2]*(b^3*e - b*c*(Sqrt[b^2 - 4*a*c]*d + 3*a*e) + a*c*(2*c*d - Sqrt[b^2 - 4*a*c]*e) + b^2*(-(c*d) + Sqrt[b^
2 - 4*a*c]*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(c^(5/2)*Sqrt
[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

________________________________________________________________________________________

Maple [B]  time = 0.295, size = 1329, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x)

[Out]

2/3*(e*x+d)^(3/2)/c/e-2*b*(e*x+d)^(1/2)/c^2-3*e^2/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-
b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*b+2*e/(
-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/
((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*d+e^2/c^2/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2
*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b
^3-e/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*
2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b^2*d-e/c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2)
)*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a+e/c^2*2^(1/2)/((b*
e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2)
)*c)^(1/2))*b^2-1/c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*
e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*d-3*e^2/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4
*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*
b+2*e/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c
*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*d+e^2/c^2/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+
2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2)
)*c)^(1/2))*b^3-e/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((
e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b^2*d+e/c*2^(1/2)/((-b*e+2*c*d+(-e^2*(
4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a
-e/c^2*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-
e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b^2+1/c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x
+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d} x^{2}}{c x^{2} + b x + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)*x^2/(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.68347, size = 5998, normalized size = 18.98 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(2)*c^2*e*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b^2*c^5
- 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*
b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^
5 - 4*a*c^6))*log(sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3
*b*c^3)*e - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c -
 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)
*e^2)/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e +
(b^2*c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3
 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11))
)/(b^2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(e*x + d))
- 3*sqrt(2)*c^2*e*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b^2*c^5 - 4
*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c
^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 -
 4*a*c^6))*log(-sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b
*c^3)*e - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5
*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e
^2)/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b
^2*c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 -
 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/
(b^2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(e*x + d)) +
3*sqrt(2)*c^2*e*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^5 - 4*a
*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4
)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4
*a*c^6))*log(sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^
3)*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*
b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)
/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*
c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*
a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^
2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(e*x + d)) - 3*s
qrt(2)*c^2*e*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^5 - 4*a*c^
6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d
*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*
c^6))*log(-sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^3)
*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^
5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(
b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^
5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^
3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*
c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(e*x + d)) + 4*(c*
e*x + c*d - 3*b*e)*sqrt(e*x + d))/(c^2*e)

________________________________________________________________________________________

Sympy [B]  time = 120.946, size = 1630, normalized size = 5.16 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x+d)**(1/2)/(c*x**2+b*x+a),x)

[Out]

2*a*b*e**2*RootSum(_t**4*(256*a**3*c**2*e**6 - 128*a**2*b**2*c*e**6 - 256*a**2*b*c**2*d*e**5 + 256*a**2*c**3*d
**2*e**4 + 16*a*b**4*e**6 + 128*a*b**3*c*d*e**5 - 128*a*b**2*c**2*d**2*e**4 - 16*b**5*d*e**5 + 16*b**4*c*d**2*
e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + c, Lambda(_t, _t*log(32*_t
**3*a**2*b*e**5 - 64*_t**3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e**5/c - 16*_t**3*a*b**2*d*e**4 + 96*_t**3*a*b*c*d**
2*e**3 - 64*_t**3*a*c**2*d**3*e**2 + 8*_t**3*b**4*d*e**4/c - 24*_t**3*b**3*d**2*e**3 + 16*_t**3*b**2*c*d**3*e*
*2 + 4*_t*a*e**2 - 2*_t*b**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d**2 + sqrt(d + e*x))))/c**2 - 2*a*e*RootSum(_t**4*(
256*a**2*c**3*e**4 - 128*a*b**2*c**2*e**4 + 16*b**4*c*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**
3*e**3 - 8*b**2*c*d*e**2) + a*e**2 - b*d*e + c*d**2, Lambda(_t, _t*log(64*_t**3*a*c**2*e**2 - 16*_t**3*b**2*c*
e**2 - 2*_t*b*e + 4*_t*c*d + sqrt(d + e*x))))/c - 2*b**2*d*e*RootSum(_t**4*(256*a**3*c**2*e**6 - 128*a**2*b**2
*c*e**6 - 256*a**2*b*c**2*d*e**5 + 256*a**2*c**3*d**2*e**4 + 16*a*b**4*e**6 + 128*a*b**3*c*d*e**5 - 128*a*b**2
*c**2*d**2*e**4 - 16*b**5*d*e**5 + 16*b**4*c*d**2*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e*
*3 - 8*b**2*c*d*e**2) + c, Lambda(_t, _t*log(32*_t**3*a**2*b*e**5 - 64*_t**3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e*
*5/c - 16*_t**3*a*b**2*d*e**4 + 96*_t**3*a*b*c*d**2*e**3 - 64*_t**3*a*c**2*d**3*e**2 + 8*_t**3*b**4*d*e**4/c -
 24*_t**3*b**3*d**2*e**3 + 16*_t**3*b**2*c*d**3*e**2 + 4*_t*a*e**2 - 2*_t*b**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d*
*2 + sqrt(d + e*x))))/c**2 + 2*b**2*e*RootSum(_t**4*(256*a**2*c**3*e**4 - 128*a*b**2*c**2*e**4 + 16*b**4*c*e**
4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + a*e**2 - b*d*e + c*d**2, Lamb
da(_t, _t*log(64*_t**3*a*c**2*e**2 - 16*_t**3*b**2*c*e**2 - 2*_t*b*e + 4*_t*c*d + sqrt(d + e*x))))/c**2 + 2*b*
d**2*RootSum(_t**4*(256*a**3*c**2*e**6 - 128*a**2*b**2*c*e**6 - 256*a**2*b*c**2*d*e**5 + 256*a**2*c**3*d**2*e*
*4 + 16*a*b**4*e**6 + 128*a*b**3*c*d*e**5 - 128*a*b**2*c**2*d**2*e**4 - 16*b**5*d*e**5 + 16*b**4*c*d**2*e**4)
+ _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + c, Lambda(_t, _t*log(32*_t**3*a*
*2*b*e**5 - 64*_t**3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e**5/c - 16*_t**3*a*b**2*d*e**4 + 96*_t**3*a*b*c*d**2*e**3
 - 64*_t**3*a*c**2*d**3*e**2 + 8*_t**3*b**4*d*e**4/c - 24*_t**3*b**3*d**2*e**3 + 16*_t**3*b**2*c*d**3*e**2 + 4
*_t*a*e**2 - 2*_t*b**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d**2 + sqrt(d + e*x))))/c - 2*b*d*RootSum(_t**4*(256*a**2*
c**3*e**4 - 128*a*b**2*c**2*e**4 + 16*b**4*c*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 -
8*b**2*c*d*e**2) + a*e**2 - b*d*e + c*d**2, Lambda(_t, _t*log(64*_t**3*a*c**2*e**2 - 16*_t**3*b**2*c*e**2 - 2*
_t*b*e + 4*_t*c*d + sqrt(d + e*x))))/c - 2*b*sqrt(d + e*x)/c**2 + 2*(d + e*x)**(3/2)/(3*c*e)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

Timed out